

UPAYA PENGENDALIAN KUALITAS UNTUK MENGURANGI PRODUK CACAT *BRACKET* TEMBOK MENGGUNAKAN METODE FMEA DI PT TAMIANG MULTI TRADA

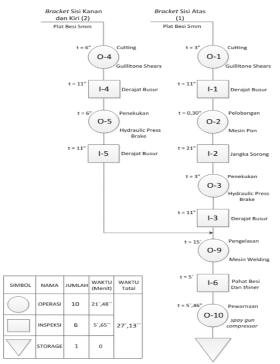
Uli Fauziyah¹ dan Emi Rusmiati²

Mahasiswa Teknik Manajemen Indstri STMI Jakarta^I Dosen STMI Jakarta² email: ulifauziah77@gmail.com¹emirtegal@gmail.com²

Abstrak

Penelitian ini dilakukan untuk mengidentifikasi jenis kegagalan yang sering terjadi pada produk *Bracket* Tembok, penyebab terjadinya kegagalan proses tersebut, jenis efek yang ditimbulkan akibat kegagalan proses, dan kontrol yang dilakukan perusahaan dalam menangani kegagalan proses yang terjadi. Metode yang digunakan dalam penelitian ini adalah *Failure Mode and Effect Analysis* (FMEA). Dari hasil penelitian menggunakan metode FMEA diketahui terdapat 10 jenis kegagalan yang terjadi pada proses pembutan komponen *Bracket* tembok. Dari beberapa jenis kegagalan yang terjadi pada proses diketahui yang memiliki nilai RPN tertinggi terdapat pada proses pengelasan dengan jenis kegagalan berupa ketebalan pengelasan yang tidak sesuai dan nilai RPN (*Risk Priority Number*) sebesar 96. Berdasarkan hasil dari tabel FMEA ini digunakan untuk bahan pertimbangan dalam melakukan perbaikan sesuai urutan prioritas agar kegagalan pada proses tidak terjadi lagi.

Kata Kunci: Bracket tembok, Failure Mode and Effect Analysis (FMEA), RPN (Risk Priority Number)


1. PENDAHULUAN

Dalam era industrialisasi yang semakin kompetitif sekarang ini, mendorong setiap pelaku bisnis untuk melakukan berbagai upaya untuk bisa bersaing dan bertahan dalam arus kompetisi yang ketat di dalam dunia industri (Priangani, 2012). Salah satu strategi dalam menghadapi persaingan yang terjadi adalah dengan menghasilkan produk-produk berkualitas supaya dapat diterima oleh konsumen (Priangani, 2012).

Dalam proses menciptakan suatu produk yang berkualitas sesuai dengan standar dan selera konsumen, seringkali masih terjadi penyimpangan yang tidak dikehendaki oleh perusahaan sehingga menghasilkan produk rusak atau cacat yang tentunya akan sangat merugikan perusahaan (Ratnadi and Suprianto, 2016). Ketidaksesuaian antara produk yang dihasilkan dengan standar yang ditetapkan atau dengan kata lain produk yang dihasilkan mengalami kerusakan/cacat disebabkan adanya penyimpangan-penyimpangan dari berbagai faktor, baik yang berasal dari bahan baku, tenaga kerja maupun kinerja dari fasilitas-fasilitas mesin yang digunakan dalam proses produksi tersebut (Ratnadi and Suprianto, 2016). Untuk mengatasi hal tersebut, salah satu tindakan yang dapat dilakukan adalah dengan menerapkan suatu sistem pengendalian kualitas agar dapat meminimalisir terjadinya kerusakan produk (*product defect*) sampai pada tingkat kerusakan nol (*zero defect*) (Ratnadi and Suprianto, 2016). PT Tamiang Multi Trada merupakan perusahaan yang bergerak di bidang manufaktur dan jasa dimana produk yang dihasilkan yaitu *Dumbwaiter*, *Elevator*, *Escalator*, dan *Travelator*. PT Tamiang Multi Trada didirikan pada 4 September 2003 di Perkampungan Industri Kecil (PIK), Kecamatan Cakung, Jakarta Timur.

Dalam proses produksi dari beberapa komponen produk yang dihasilkan juga juga tidak terlepas dari adanya penyimpangan yang tidak sesuai standar dan kualitas yang ditetapkan. Seperti yang terjadi pada salah satu komponen *elevator* yang menjadi objek penelitian yaitu *bracket* tembok. *Bracket* tembok ini dirakit pada bagian tiang *elevator* yang nantinya akan dipasang pada tembok bangunan yang dijadikan ruang *elevator*. Pengamatan pada komponen *bracket* tembok ini dilakukan pada proses akhir produksi yaitu pada proses pewarnaan. Proses ini merupakan tahap akhir dilakukannya inspeksi pada komponen tersebut sebelum komponen digunakan. Proses pembuatan *bracket* tembok ini melalui beberapa tahap yaitu pemotongan, pembuatan lubang, penekukan, pengelasan, pembersihan dan pemeriksaaan, serta pewarnaan dan pemeriksaan. Berikut urutan proses pembuatan *bracket* tembok yang dapat dilihat Gambar 1.

ISBN: 978-602-51014-4-1

Gambar 1 Peta Proses Operasi Bracket Tembok

Dari proses tersebut terdapat beberapa kegagalan yang pernah terjadi disetiap prosesnya, kegagalan tersebut berpotensi pada dampak yang dihasilkan sebelum dilakukannya perakitan produk utama. PT Tamiang Multi Trada berharap dapat menekan jumlah cacat pada setiap proses produksinya sehingga dapat meghemat biaya produksi, waktu, dan tenaga. Oleh karena itu, diperlukan sebuah cara agar produk cacat dapat diminimasi dengan kata lain tidak hanya menjaga kualitas namun meningkatkan kualitas produk yang dihasilkan sesuai dengan keinginan konsumen (Amrina Elita, 2015). Upaya dalam pengendalian kualitas tersebut dapat dilakukan dengan menggunakan metode *Failure Mode and Effect Analysis* (FMEA) (Puspitasari and Martanto, 2014). Dimana FMEA adalah sebuah teknik evaluasi tingkat keadalan dari sebuah sistem untuk menentukan efek dari kegagalan sistem tersebut guna mengidentfikasi dan mencegah sebanyak mungkin mode kegagalan (*failure mode*) dengan skala prioritas pada masing- masing proses (Utama Zulfi Nur, Yuniar, 2016).

Tujuan dari penelitian ini adalah untuk mengidentifikasi jenis kecacatan pada *bracket* tembok dan faktor penyebab kecacatan yang terjadi pada proses pembuatan *bracket* tembok serta memberikan usulan faktor mana yang seharusnya didahulukan untuk diperbaiki.

2. METODOLOGI

Penelitian ini dilakukan di perusahaan PT Tamiang Multi Trada yang berada di Jl. Raya Penggilingan No. 103, Blok G, Penggilingan Perkampungan Industri Kecil (PIK), Kec. Cakung, Jakarta Timur dengan melakukan pengamatan dan penelitian secara langsung dilapangan, yaitu pada proses produksi *bracket* tembok. Dimana pada setiap proses produksi *bracket* tembok ini terdapat beberapa kegagalan yang dapat menimbulkan kerugian bagi perusahaan. Sehingga perlu dilakukan pengendalian kualitas yang baik dan benar. Salah satu *tool* yang digunakan untuk melakukan pengendalian kualitas adalah menggunakan metode *Failure Modes and Effects Analysis* (FMEA). FMEA merupakan sebuah metodologi yang digunakan untuk mengevaluasi kegagalan terjadi dalam sebuah sistem, desain, proses, atau pelayanan (*service*). Identifikasi kegagalan potensial yang terjadi di setiap proses produksi *Bracket* tembok dilakukan dengan cara pemberian nilai atau skor masing – masing moda kegagalan berdasarkan atas tingkat keparahan (*severity*), tingkat kejadian (*occurrence*), dan tingkat deteksi (*detection*). Berikut tahapan yang dilakukan dalam pemecahan masalah yang terjadi dalam proses produksi *Bracket* tembok:

" Meningkatkan Daya Saing Industri Kreatif dengan Standardisasi"

ISBN: 978-602-51014-4-1

- 1. Melakkan pengamatan terhadap proses
- 2. Identifikasi jenis-jenis kegagalan (failure mode)
- 3. Mengidentifikasi akibat potensial (potensial effect) yang ditimbulkan oleh potensial failure mode.
- 4. Menetapkan nilai severity (S)

Tabel 1Severity Rating

Akibat	Kriteria	Rangking
Berbahaya tanpa ada	Tingkat keparahan sangat tinggi, sehinggah dapat	10
peringatan	membahayakan operator serta tidak adanya peringatan.	
Berbahaya dan ada	Tingkat keparahan sangat tinggi, sehinggah dapat	9
peringatan	membahayakan operator serta adanya peringatan	
Sangat tinggi	Produk yang cacat menyebabkan 100% harus dibuang	8
Tinggi	Produk yang cacat menyebabkan sebagian produk harus dibuang dan sisanya dapat disortir (apakah sudah baik atau bisa di rework) pelanggan tidak puas	7
Sedang	Sebagian kecil menjadi scrap, sisanya tidak perlu di sortir (sudah baik) dan pelanggan tidak puas dengan produk yang di hasilkan	6
Rendah	Sedikit mengganggu produksi, 100% produk dapat di rework	5
Sangat rendah	Agak mengganggu produksi, sebagian produk kurang dari 100% harus diperbaiki	4
Kecil	Hanya sebagian kecil dapat di rework dan sisanya sudah baik	3
Sangat kecil	Sedikit mengganggu produksi kurang dari 100% harus diperbaiki langsung di tempat kerja, pelanggan sangat tidak puas	2
Tidak ada	Tidak ada akibat apa-apa	1

- 5. Mengidentifikasi penyebab (potensial cause) dari failure mode yang terjadi.
- 6. Menetapkan nilai occurrence (O)

Tabel 2Occurance Rating

Peluang Terjadinya penyebab kegagalan	Tingkat kemungkinan	Rangking
	kegagalan	
Sangat tinggi: Kegagalan hampir tak terhindarkan	1 dalam 2	10
	1 dalam 3	9
Tinggi: Berhubungan dengan proses serupa ke proses	1 dalam 8	8
sebelumnya yang sudah sering gagal	1 dalam 20	7
Sedang: Berhubungan dengan proses serupa ke	1 dalam 80	6
proses sebelumnya yang sudah mengalami kegagalan sekali-sekali	1 dalam 400	5
Rendah: Kegagalan yang terisolasi berhungungan	1 dalam 2000	4
dengan proses serupa	1 dalam 15000	3
Sangat kecil: Kegagalan tidak mungkin, tidak terjadi	1 dalam 150000	2
kegagalan yang berhubungan dengan proses serupa	1 dalam 1500000	1

7. Identifikasi kontrol proses saat ini (*current process control*) yang merupakan deskripsi dari kontrol untuk mencegah kemungkinan sesuatu yang menyebabkan mode kegagalan atau kerugian akibat cacat

8. Menetapkan nilai detection (D)

Tabel 3Detection Rating

Deteksi	Criteria	Rangking				
Absolutely impossible	I I idak ada kandali jintijk mandataksi kacacalan					
Very remote	Sangat sedikit kendali untuk mendeteksi kegagalan	9				
Remote	Sedikit terdapat kendali untuk mendeteksi kegagalan	8				
Very low	Sangat rendah terdapat kendali untuk mendeteksi					
Low	Rendah terdapat kendali untuk mendeteksi kegagalan	6				
Moderate	oderate Sedang terdapat kendali untuk mendeteksi kegagalan					
Moderately high	Sedang tinggi terdapat kendali untuk mendeteksi kegagalan					
High	Tinggi terdapat kendali untuk mendeteksi kegagalan	3				
Very high	Sangat tinggi terdapat kendali untuk mendeteksi kegagalan					
Almost certain	Kendali hampir pasti dapat mendeteksi kegagalan	1				

9. Nilai RPN (Risk Potensial Number)

RPN menegaskan tingkat prioritas dari suatu *failure*. Nilai RPN bergantung pada nilai *severity* rating, occurance rating, dan detection rating. Rumus yang digunakan untuk menghitung RPN vaitu:

RPN = severity rating x occurance rating x detection rating = S x O x D

- 10. Nilai RPN menunjukkan keseriusan dari *potensial failure*, semakin tinggi nilai RPN maka menunjukkan semakin bermasalah.
- 11. Memberikan usulan perbaikan terhadap *potensial cause*, alat *control* dan efek yang diakibatkan dari cacat ini. Prioritas perbaikan pada *failure mode* yang memiliki nilai RPN terpilih

3. HASIL DAN PEMBAHASAN

Pada penelitian ini, data yang dikumpulkan berupa data jenis kegagalan yang terjadi dengan melakukan pengamatan disetiap proses pembuatan *bracket* tembok yaitu pada proses pemotongan, pembuatan lubang, penekukan, pengelasan, pembersihan dan pemeriksaan, serta pewarnaan dan pemeriksaan. Berikut bentuk kegagalan yang dapat terjadi pada proses pembuatan *bracket* tembok dapat dilihat pada Tabel 4.

Tabel 4 Jenis Kegagalan Produk *Bracket* Tembok di PT Tamiang Multi Trada

No.	Bentuk kegagalan	Penyebab	Dampak		
1.	Hasil pemotongan terlalu	Salah perhitungan pada	Tidak dapat dirakit maka		
1.	panjang	pengaturan mesin oleh operator	dilakukan perbaikan		
2.	Hasil pemotongan terlalu	Salah perhitungan pada	Reject atau dimanfaatkan		
۷.	pendek	pengaturan mesin oleh operator	untuk komponen lain		
3.	Pemotongan tidak presisi	Operator tidak teliti	Reject		
4.	Diameter terlalu besar	Operator kurang teliti	Reject		
5.	Diameter terlalu kecil	Operator kurang teliti	Tidak dapat dipasang maka		
٥.	Diameter teriard keen	Operator kurang tenti	dilakukan perbaikan		
6.	Derajat radius terlalu	Kesalahan pengaturan mesin	Reject		
<u> </u>	kecil	resultant pengaturan mesin	Reject		
7.	Derajat radius terlalu	Kesalahan pengaturan mesin	Tidak daat dipasang maka		
٠.	besar	Resultation perigaturan mesin	dilakukan perbaikan		
8.	Ketebalan pengelasan	Operator kurang teliti	Reject		
J.	yang tidak sesuai	operator karang tenti			
9.	Hasil pengelasan terlepas	Hasil pengelasan yang kurang	Komponen tidak dapat pasang		
<i>)</i> .	Thasii pengerasan terrepas	matang	maka dilakukan perbaikan		
10	Pewarnaan tidak merata	Komposisi cat dan thiner yang	Tidak diterima maka dilakukan		
10	1 Cwarnaan ddak merata	tidak sesuai	perbaikan		

" Meningkatkan Daya Saing Industri Kreatif dengan Standardisasi"

ISBN: 978-602-51014-4-1

Dari masing-masing moda kegagalan tersebut kemudian ditentukan nilai *severity*, *occurrence*, dan *detection*, dan selanjutnya dapat dilakukan perhitungan nilai RPN untuk masing – masing moda kegagalan yang terjadi. Dari moda kegagalan dengan nilai RPN terbesar menjadi prioritas utama untuk dilakukan tindakan korektif. Berikut Tabel FMEA yang dapat dilihat pada Tabel 5.

Tabel 5Failure Mode and Effect Analysis (FMEA)

			RE MODE AND	EFF	ECT ANALYSIS		- /		
item	responsbility			key date					
No	Item/Function	Potensial Failure Mode	Potensial Effect(S) Of Failure	s	Potensial Cause(S) Mechanisme(S) Of Failure	o	Current design controls	D	RP N
		Hasil pemotongan terlalu panjang	Tidak dapat dirakit maka dilakukan perbaikan	5	Salah perhitungan pada pengaturan mesin oleh operator	2	Alat ukur/mistar	3	30
1.	1. Pemotongan	Hasil pemotongan terlalu pendek	Reject	8	Salah perhitungan pada pengaturan mesin oleh operator	2	Alat ukur/mistar	3	48
		Pemotongan tidak presisi	Reject	8	Operator kurang teliti	3	Derajat busur	3	72
		Diameter terlalu besar	Reject	8	Operator kurang teliti	2	Jangka sorong	3	48
2.	Pembuatan lubang	Diameter terlalu kecil	Tidak dapat dipasang maka dilakukan perbaikan	5	Operator kurang teliti	2	Jangka sorong	3	30
		Derajat radius terlalu kecil	Reject	8	Kesalahan pengaturan mesin oleh operator	2	Derajat busur	3	48
3.	Penekukan	Penekukan Derajat radius terlalu besar	Tidak daat dipasang maka dilakukan perbaikan	5	Kesalahan pengaturan mesin oleh operator	3	Derajat busur	3	45
4.	Pengelasan	Ketebalan pengelasan yang tidak sesuai	Reject	8	Operator kurang teliti	3	Visual (secara langsung)	4	96
5.	Pembersihan	Hasil pengelasan terlepas	Komponen tidak dapat pasang maka dilakukan perbaikan	6	Hasil pengelasan yang kurang matang	2	Pahat besi dan visual (secara langsung)	4	48
6.	Pewarnaan	Pewarnaan tidak merata	Tidak diterima maka dilakukan perbaikan	6	Komposisi cat dan thiner yang tidak sesuai	3	Visual (secara langsung)	4	72

" Meningkatkan Daya Saing Industri Kreatif dengan Standardisasi"

ISBN: 978-602-51014-4-1

Berdasarkan tabel analisis dengan metode FMEA, diketahui untuk nilai *Risk Priority Number* (RPN) tertinggi diperoleh pada proses pengelasan yaitu 96, sehingga menjadi prioritas utama untuk dilakukan peananganan. Pada hasil proses pengelasan yang tidak sesuai memiliki pengaruh yang sangat besar yang mengakibatkan terjadinya *defect*. Namun, moda kegagalan lainnya yang telah teridentifikasi tetap perlu juga dilakukan pencegahan terjadinya kegagalan, dan diberikan usulan perbaikan sebagai bahan pertimbangan perusahaan untuk meningkatan produktivitas perusahaan. Usulan perbaikan yang dilakukan berdasarkan dari urutan prioritas dapat dilihat pada Tabel 6.

Tabel 6 Usulan Perbaikan Berdasarkan RPN

No	Potensial Failure Mode	Potensial Effect(S) Of Failure	Potensial Cause(S) Mechanisme (S) Of Failure	Current design controls	RPN	Rekomendasi Perbaikan
1.	Ketebalan pengelasan yang tidak sesuai	Reject	Operator kurang teliti	Visual (secara langsung)	96	Operator harus lebih teliti dalam melakukan pengelasan dan dilakukan oleh satu operator tetap
2.	Pemotongan tidak presisi	Reject	Operator kurang teliti	Derajat busur	72	Operator lebih bisa teliti dalam memposisikan bahan baku
3.	Pewarnaan tidak merata	Tidak diterima maka dilakukan perbaikan	Komposisi cat dan thiner yang tidak sesuai	Visual (secara langsung)	72	Komposisi cat lebih diperhatikan sesuai dengan pedoman dan takaran yang benar
4.	Hasil pemotongan terlalu pendek	Reject atau dimanfaatkan untuk komponen lain	Salah perhitungan pada pengaturan mesin oleh operator	Alat ukur/mistar	48	Penetapan operator pada bagian pengaturan mesin
5.	Diameter terlalu besar	Reject	Operator kurang teliti	Jangka sorong	48	Operator lebih bisa teliti dalam memposisikan bahan baku
6.	Derajat radius terlalu kecil	Reject	Kesalahan pengaturan mesin oleh operator	Derajat busur	48	Penetapan operator pada bagian pengaturan mesin
7.	Hasil pengelasan terlepas	Komponen tidak dapat pasang maka dilakukan perbaikan	Hasil pengelasan yang kurang matang	Pahat besi dan visual (secara langsung)	48	Operator lebih bisa teliti dan penetapan operator pada proses pengelasan
8.	Derajat radius terlalu besar	Tidak dapat dipasang maka dilakukan perbaikan	Kesalahan pengaturan mesin oleh operator	Derajat busur	45	Penetapan operator pada bagian pengaturan mesin
9.	Hasil pemotongan terlalu panjang	Tidak dapat dirakit maka dilakukan perbaikan	Salah perhitungan pada pengaturan mesin oleh operator	Alat ukur/mistar	30	Penetapan operator pada bagian pengaturan mesin
10.	Diameter terlalu kecil	Tidak dapat dipasang maka dilakukan perbaikan	Operator kurang teliti	Jangka sorong	30	Operator lebih bisa teliti dan penetapan operator pada proses pengelasan

" Meningkatkan Daya Saing Industri Kreatif dengan Standardisasi"

SNaTIPs 2018

ISBN: 978-602-51014-4-1

4. KESIMPULAN

Moda kegagalan potensial pada proses pembuatan *bracket* tembok pada PT Tamiang Multi Trada terdiri dari 10 jenis kegagalan. Dari beberapa jenis kegagalan yang terjadi pada setiap proses yang memiliki nilai RPN tertingi yaitu pada proses pengelasan dengan nilai RPN sebesar 96. Jenis kegagalan tersebut diakibatkan oleh kurangnya ketelitian operator saat melakukan pekerjaan las sehingga berdampak pada ketebalan hasil pengelasan yang tidak sesuai dengan yang telah distandarkan oleh perusahaan. Resiko kegagalan pada hasil FMEA tersebut digunakan sebagai prioritas dalam usulan perbaikan. Akan tetapi, untuk jenis kegagalan lain yang terdapat pada proses pembuatan komponen *bracket* tembok tetap perlu dilakukan perbaikan yang disesuaikan dengan kondisi perusahaan.

DAFTAR PUSTAKA

- Amrina Elita, N. F. (2015) 'Analisis Ketidaksesuaian Produk Air Minum Dalam Kemasan Di PT Amanah Insanillahia', 14(1).
- Priangani, A. (2012) 'Analisis Lingkungan Global Dalam Persaingan', (2), pp. 1–13.
- Puspitasari, N. B. and Martanto, A. (2014) 'Penggunaan FMEA dalam Mengidentifikasi Resiko Kegagalan Proses Produksi Sarung ATM (Alat Tenun Mesin) (Studi Kasus PT ASAPUTEX Jaya Tegal)', *J@TI Undip*, IX(2), pp. 93–98.
- Ratnadi and Suprianto, E. (2016) 'Pengendalian Kualitas Produksi Menggunakan Alat Bantu Statistik (Seven Tools) Dalam Upaya Menekan Tingkat Kerusakan Produk', *Program Studi Teknik & Manajemen Pembekalan Fakultas Teknik Universitas Nurtanio Bandung*, 6(2), pp. 10–18.
- Utama Zulfi Nur, Yuniar, Li. F. (2016) 'Produk Celana Jeans Dengan Menggunakan Metode Failur Mode And Effect Analysis', *Jurnal Online Institut Teknologi Nasional*, 4(01), pp. 263–274.